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We present  a solution for the problem of the distr ibution of tempera ture  and that of the inten- 
sity of heat flows in bodies that are  in contact in the ease of s teady-s ta te  heat t ransfer  and 
great  veloci t ies  of motion. 

The descr ipt ion of cer ta in  technological p rocesses  is frequently reduced to the following heat p rob-  
lem (Fig. 1). 

A rod II is moving at a velocity v 1 in the direct ion of the x-axis  over the surface of a semiinfinite plate 
I. The rod is moving simultaneously at a velocity v 2 = v t /k  in the plane perpendicular  to the vector  of the 
velocity vj. 

At each point of contact between the rod and the semiinfinite plate a quantity of heat equal to q is l ib- 
erated.  The initial t empera tu re  of the bodies is t o . 

We have to find the tempera ture  distr ibution at the contact a rea  and to determine the quantity of heat 
which is t r ans f e r r ed  to each of the bodies in contact. 

Let us examine the solution of this problem for the case  of s teady-s ta te  heat t r ans fe r  and for the case 
of great  velocit ies of body motion. 

We will assume the thermophysica l  proper t ies  of the bodies to be constant and identical, as well a s  
independent of t empera ture .  

We will a s sume the bodies in contact to be thin, and we will neglect the var ia t ion in t empera tu re  
through the body thickness.  

Let us write [1] the equation for the propagation of heat in a semiinfinite plate in a coordinate sys tem 
associa ted with the heat source  in the following manner:  

at + I, ka- w - / y !  
or in dimensionless  form 

0O 020 a20 
Pe -- + ~ (I) 

At a great  velocity,  the t empera tu re  gradient  in the direct ion ~ of the displacement  of the heat source  
is small  in compar ison  with the gradient  along the normal  to the displacement  axis, i. e , ,  

OO 80 
a~ a~q 

This provides a basis  for replacing the p roces s  of heat propagation in the plate by a set of independent heat-  
propagation p roces se s  in e lementary  rods  perpendicular  to the x-axis  [2]. 
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f Jo/  Fig. 1. D iag ram for the calculat ion of the 
t r a n s f e r  of heat  between two bodies  in 
contact (I and II a re  semiinfini te  plates) .  

Equation (1) then a s s u m e s  the fo rm 

00 030 
P e 0 ~  = 0Ti ~ (2) 

In p rac t i ca l  t e r m s ,  Eq. (2) can be used to calcula te  the t e m p e r a t u r e s  of the contact  and nea r - con tac t  
reg ions  for the case  in which Pe > 10 [3]. 

In t he rmophys ic s  it is f requent ly  n e c e s s a r y  to deal with h igh-speed  p r o c e s s e s  in which the Pe num-  
b e r s  a re  in the o rde r  of hundreds ,  thousands,  and more ,  and the assumpt ion  that  it is poss ib le  to neglect  
the flow of conduction heat  along the x - ax i s  introduces no pe rcep t ib le  e r r o r  into the engineer ing ca lcu la -  
t ions.  

The boundary conditions for (2) a r e  

0 {~=o = 0, (3) 

O00~i ~.r = 0 .  (4) 

We de te rmine  the boundary condition for ~? = 0 f rom the condition of the heat  ba lance  at the contact a rea .  

The d i rec t ion  of the heat flow qr  to the rod, in the case  of a g r ea t  rod veloci ty  v2, v i r tual ly  coincides 
with the d i rec t ion  of motion and qr is thus l inear ly  dependent on the contact  t empe ra tu r e :  

qr = cp y v 2 (tc - -  to). 

Consequently,  the hea t -ba lance  equation for  each of the points on the contact  su r face  is wr i t ten  in the fol-  
lowing manner :  

- -X  at 
0 - ~  = q - -  cp ~ v2 (tc - -  to) 

or  in d imens ion less  fo rm 

0~O0 ~=0 Pe = K i - - ~ -  0 c. (5) 

We note that the f rac t ion  of heat  reaching  the rod f rom each of the contact points ,  in re la t ive  t e r m s ,  
amounts  to 

Pe 
(Or = ~ 0c, 

Ki k (6) 

while in the ha l f -p lane  we have 

oh = 1 - - o r .  (7) 

Expres s ion  (5) is the boundary condition for (2) when ~? = 0 and ~ ~ [0, 1]. 

Applying the Laplace  t r a n s f o r m  to (2) with conditions (3), (4), and (5) in the domain ~ ~ [0, 1], .we 
obtain 

Kik [ ( ~1 ~ ( P e  Pe ) (~/~-~ ~ - V - ~ - ) ]  �9 (8) 
O=  erfc _ V-Pe _ --exp + ~ erfc ~ +  

p--T \ 2~,~ J T n --~ ~ 2 ~  
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Fig. 2. Diagram of free cutting: I) material ;  II) cutter; rII) shavings; A-B) s t ra in  
zone; a) distr ibution of t empera ture  along the length of the shaving s t ra in  zone as 
a function of cutting speed; [1) Pe = 10; 2) 20; 3) 30; 4) 40; 5) 50; 6) 100]; b) k =2.5. 

Fig. 3. Heat balance for the cutting as a function of the cutting speed. 

We can use express ion (8) to determine the t empera tu res  in the near -con tac t  region I of the body. 

Assuming in (9) that V = 0, we write the formula  for the determinat ion of the t empera tu re  in the con-  

tact  area :  

} 
Oc = P e  - -  

Bearing in mind (6) and (7), we find the heat-balance data 

(| o~r : 1 - -  exp erfc , (10) 

Figure 2a shows an idealized d iagram of free cutting. Shavings are  removed in the s t ra in  zone A-B 
and the heat of deformation q is re leased.  In this d iagram,  the t rans fe r  of heat between object I and shav-  
ings II can be t rea ted  in accordance  with the above-ci ted theoret ical  scheme [3]. In this ease v 1 is the cut-  
ting speed, and k is the coefficient of shavings shrinkage. Figure 2b shows the curves  for the change in 
t empera tu re  over the length of the s t ra in  focus for var ious  cutting speeds. 

An exam~nationof Fig. 2shows that at high cutting speeds the t empera tu re  in the s t ra in  zone var ies  
insignificantly, with the exception of the small  initial segments  in which there is a pronounced var iat ion in 
the initial t empera ture ,  subsequently becoming asymptotic.  The fact of the constancy of the s t ra in  t e m -  
pera ture  agrees  with the data of other r e s e a r c h e r s  [3]. 

The profi le for the intensity of the heat flow removed with the shavings, in the light of (6), coincides 
with the t empera tu re  profi le  and also exhibits a maximum toward the end of the s t ra in  zone. 

Having integrated (8) with respec t  to ~ f rom 0 to 1, we obtain an express ion for the mean integral  
s t ra in  t empera tu re  

Ki k 
0~t = p---( ~, (12) 

where 

= exp erfc - co 1 ~ / ~ P e  Pe k 2- 

Bearing in mind (6), we see that w is the rat io of the quantity of heat removed by the shavings to all of 
the heat that has been re leased.  
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Figure  3 shows the cu rves  for  the change in w, r Wh as a function of the complex P e / k  2 for ~ = 1. 

F r o m  ana lys i s  of Fig. 3 we can draw the conclusion that  at high cutting speeds  the values  of the av-  
e rage  and max imum intensi t ies  of heat  flows to the shavings (or the ave rage  and max imum s t ra in  t e m p e r a -  
tures)  differ  l i t t le  f r o m  each other;  the pr incipal  f rac t ion  of the l ibe ra ted  heat is r emoved  together  with the 
shavings.  

Let  us note that  for Pe ~ /k  2 > 10 fo rmu la s  (9)-(11) a r e  substant ia l ly  s implif ied if we use the asympto t ic  
r e p r e s e n t a t i o n  of the er fc  function 

Oc. Kik (i  k ) (14) 

k 
car ~ -  1 ~ , (15) 

(16) k 
r --- ~ . 

When P e / k  2 > 10, f o rm u l a  (13) is s impl i f ied  to 

2k = 1 --  1/~pe: (17) 

In conclusion,  we note that in [5] equations and boundary conditions s im i l a r  to (2), (3), and (5) were  
examined.  However ,  the physica l  formula t ion  of the p rob lem and the method of solution dif fer  f rom those 
adopted in the cited r e f e r ence .  
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N O T A T I O N  

is the veloci ty  at which body I is moving in the d i rec t ion  of the x -ax i s ;  
is the veloci ty  of body II; 
is the shr inkage  factor ;  
a r e  coordinates  a s soc ia t ed  with the rod; 
is the t e m p e r a t u r e ;  
is the coeff icient  of  t h e r m a l  diffusivity; 
is the Pec le t  number;  
a re  d imens ion less  coord ina tes ,  ~ = x / l ,  77 = y/ / ;  
,s the contact  length; 
is the d imens ion less  t e m p e r a t u r e ,  0 = (t - t0) / ( tsc  - to) 
~s the scale  t e m p e r a t u r e ;  
,s the initial t empe ra tu r e ;  
is the specif ic  quantity of heat  t r a n s f e r r e d  to rod I; 
,s  the specif ic  heat  capacity;  
,s  the density; 
is the coeff icient  of t h e r m a l  conductivity for  body I; 
,s the Kirpichev number ;  
is the ra t io  of the quantity of heat  to the rod at each point of contact  to the quantity of heat  
l ibe ra ted  at that  point; 
is the s ame ,  with r e f e r e n c e  to the half -plane;  
is the ave rage  re la t ive  t e m p e r a t u r e  at the contact  a rea ;  
is the ave r age  quantity of heat  to the rod re la t ive  to the overa l l  heat  l ibe ra ted  at the contact  
a rea .  
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