THE TRANSFER OF HEAT BETWEEN MOVING BODIES
IN CONTACT
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We present a solution for the problem of the distribution of temperature and that of the inten-
sity of heat flows in bodies that are in contact in the case of steady~state heat transfer and
great velocities of motion,

The description of certain technological processes is frequently reduced to the following heat prob-
lem (Fig.1).

A rod II is moving at a velocity v, in the direction of the x-axis over the surface of a semiinfinite plate
I. The rod is moving simultaneously at a velocity v, = v;/k in the plane perpendicular to the vector of the
velocity v;.

At each point of contact between the rod and the semiinfinite plate a quantity of heat equal to q is lib-
erated. The initial temperature of the bodies is t,.

We have to find the temperature distribution at the contact area and to determine the quantity of heat
which is transferred to each of the bodies in contact,

Let us examine the solution of this problem for the case of steady~state heat transfer and for the case
of great velocities of body motion,

We will assume the thermophysical properties of the bodies to be constant and identical, as well as
independent of temperature.

We will agssume the bodies in contact to be thin, and we will neglect the variation in temperature
through the body thickness.

Let us write [1] the equation for the propagation of heat in a semiinfinite plate in a coordinate system
associated with the heat source in the following manner:
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or in dimensionless form
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1)

At a great velocity, the temperature gradient in the direction £ of the displacement of the heat source
is small in comparison with the gradient along the normal to the displacement axis, i.e.,

This provides a basis for replacing the process of heat propagation in the plate by a set of independent heat~
propagation processes in elementary rods perpendicular to the x-axis [2].
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Fig.1. Diagram for the calculation of the
transfer of heat between two bodies in
contact (I and II are semiinfinite plates).

Equation (1) then assumes the form
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In practical terms, Eq.(2) can be used to calculate the temperatures of the contact and near-contact
regions for the case in which Pe > 10 [3].

(2)

In thermophysics it is frequently necessary to deal with high-speed processes in which the Pe num-
bers are in the order of hundreds, thousands, and more, and the assumption that it is possible to neglect
the flow of conduction heat along the x-axis introduces no perceptible error into the engineering calcula-
tions, :

The houndary conditions for (2) are

0 lgmo =0, (3)
a0
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We determine the boundary condition for 7 = 0 from the condition of the heat balance at the contact area.

The direction of the heat flow qy to the rod, in the case of a great rod velocity v,, virtually coincides
with the direction of motion and gy is thus linearly dependent on the contact temperature:

Gr =€, Y Uy (Fe— 1o)-

Consequently, the heat-balance equation for each of the points on the contact surface is written in the fol-
lowing manner:
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or in dimensionless form
00 . Pe
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We note that the fraction of heat reaching the rod from each of the contact points, in relative terms,
amounts to

_ Pe 0
= ki O (6)
while in the half-plane we have
op=1—o;. (7

Expression (5) is the boundary condition for (2) whenn = 0 and & € [0, 1].
Applying the Laplace transform to (2) with conditions (3), (4), and (5) in the domain £ € [0, 1], -we

obtain
ik Pe Pe Pe
0= I;le [erfc ( g];? ) — exp (——-—n—l— _— g) erfe (ij n-+ ﬂ /E)] (8
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Fig. 2. Diagram of free cutting: ) material; II) cutter; II) shavings; A-B) strain
zone; a) distribution of temperature along the length of the shaving strain zone as
a function of cutting speed; [1) Pe = 10; 2) 20; 3) 30; 4) 40; 5) 50; 6) 100]; b) k =2.5.

Fig. 3. Heat balance for the cutting as a function of the cuiting speed.

We can use expression (8) to determine the temperatures in the near-contact region I of the body.

Assuming in (9) that n = 0, we write the formula for the determination of the temperature in the con-

tact area:
Bc:%@ [1—~exp (i;—g—) erfc (V%E)] . (9
Bearing in mind (6) and (7), we find the heat-balance data
or =1 ——-exp( P;E ) erfc (gﬁ-\) , {10)
@, = exp (_PTié) erfc (]/ng ) . (11

Figure 2a shows an idealized diagram of free cutting. Shavings are removed in the strain zone A-B
and the heat of deformation q is released. In this diagram, the transfer of heat between object I and shav-
ings II can be treated in accordance with the above-~cited theoretical scheme [3]. In this case vy is the cut-
ting speed, and k is the coefficient of shavings shrinkage. Figure 2b shows the curves for the change in
temperature over the length of the strain focus for various cutting speeds.

An examination of Fig. 2 shows that at high cutting speeds the temperature in the strain zone varies
insignificantly, with the exception of the small initial segments in which there is a pronounced variation in
the initial temperature, subsequently becoming asymptotic. The fact of the constancy of the strain tem-
perature agrees with the data of other researchers [3].

The profile for the intensity of the heat flow removed with the shavings, in the light of (6), coincides
with the temperature profile and also exhibits a maximum toward the end of the strain zone.

Having integrated (8) with respect to § from 0 to 1, we obtain an expression for the mean integral
strain temperature

Kik
Oy = @, 12
st Pe (12
where
2% £ / Pe V/Pe
= 2N < ) : (13)
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Bearing in mind (6), we see that wis the ratio of the quantity of heat removed by the shavings to all of
the heat that has been released.
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Figure 3 shows the curves for the change in w, wp, wh as a function of the complex Pe/k? for ¢ = 1.

From analysis of Fig.3 we can draw the conclusion that at high cutting speeds the values of the av-
erage and maximum intensities of heat flows to the shavings (or the average and maximum strain tempera-
tures) differ little from each other; the principal fraction of the liberated heat is removed together with the
shavings,

Let us note that for Pe& /k? > 10 formulas (9)-(11) are substantially simplified if we use the asymptotic
representation of the erfe function

6, = KUk (1_7’1_;), (14)
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When Pe/k? > 10, formula (13) is simplified to
' 2k
0=1— . 17)
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In conclusion, we note that in [5] equations and boundary conditions similar to (2), (3), and (5) were
examined, However, the physical formulation of the problem and the method of solution differ from those
adopted in the cited reference,

NOTATION
7] is the velocity at which body I is moving in the direction of the x~-axis;
vy is the velocity of body II;
k is the shrinkage factor;
xandy are coordinates associated with the rod;
t is the temperature;
a is the coefficient of thermal diffusivity;
Pe =vl/a is the Peclet number;
£ andn are dimensionless coordinates, ¢ =x/I, n =y/I;
4 is the contact length;
] is the dimensionless temperature, g = (t — to)/(tgc — to)
tse is the scale temperature;
tg is the initial temperature;
Ay is the specific quantity of heat transferred to rod I;
Cp is the specific heat capacity;
Y is the density;
A is the coefficient of thermal conductivity for body I;
Ki is the Kirpichev number;
Wy is the ratio of the quantity of heat to the rod at each point of contact to the quantity of heat
liberated at that point;
wh is the same, with reference to the half-plane;
9s is the average relative temperature at the contact area;
w is the average quantity of heat to the rod relative to the overall heat liberated at the contact
area.
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